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Spectral Super-Resolution via
Coupled Sparse Dictionary Learning

Konstantina Fotiadou, Grigorios Tsagkatakis, and Panagiotis Tsakalides

Abstract—High-spectral resolution imaging systems provide
critical information enabling a better identification and char-
acterization of the objects in a scene of interest. Nevertheless,
multiple factors may impair spectral resolution, as in the case
of modern snapshot spectral imagers that associate each “hyper-
pixel” with a specific spectral band. In this work, we propose
a novel post-acquisition computational technique aiming to en-
hance the spectral dimensionality of imaging systems by exploit-
ing the mathematical frameworks of Sparse Representations and
Dictionary Learning. The key contribution of this work is a
novel coupled sparse dictionary learning model which considers
coupled feature spaces, composed of low and high spectral
resolution hypercubes, in order to address the spectral super-
resolution problem. We formulate our spectral coupled dictionary
learning technique within the context of the Alternating Direction
Method of Multipliers, optimizing each variable via closed-form
expressions. Experimental results demonstrate the ability of the
proposed approach to synthesize high-spectral resolution three-
dimensional hypercubes, achieving better performance compared
to state-of-the-art resolution enhancement methods.

I. INTRODUCTION

H IGH-resolution remote sensing architectures including
Synthetical Aperture Radars [1] and Hyperspectral

Imaging (HSI) [2] offer valuable insights regarding the com-
position of a scene and singicifantly facilitate tasks like object
and material recognition [3], spectral unmixing [4]–[6], and
region clustering [7]–[11], among others. To achieve this goal,
high spatial and spectral resolution imaging systems must
capture massive amounts of measurements, encoding the dy-
namics of spatial and spectral variations of a scene. However,
achieving high spatial, spectral, and temporal resolution is
extremely challenging, due to multiple architectural constraints
and conflicting objectives.

A representative example of this predicament is illustreated
in the case of Spectrally Resolvable Detector Array (SRDA)
architectures [12], a new generation of snapshot spectral
imagers which seek to acquire the entire three-dimensional
hypercube over a single integration period. By employing
advanced detector fabrication processes, SRDA architectures
associate each pixel with a single spectral band, according
to a pattern that is repeated along the spatial dimensions of
the detector. This allows for extremely lightweight cameras,
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capable of simultaneously acquiring tens of spectral bands.
Despite the dramatic reduction these architectures offer with
respect to acquisition time, they also lead to a reduction of the
spatio-spectral resolution since only a single spectral band is
captured by each spatial detector element [13], [14].

In addition to SRDA, traditional HSI architectures that rely
of filter wheels for examples also face similar problems since
the number of acquired spectral bands is directly related to the
size and complexity of the system design. As a consequence,
snapshot spectral imagers are limited to a relatively small
number of spectral bands. In our work, instead of introducing
additional hardware components, we propose a novel com-
putational imaging framework to address the aforementioned
limitations.

Formally, this paper employs the concept of spectral super-
resolution, where low and high spectral resolution training
examples are used within a computational learning frame-
work to increase the spectral resolution of existing systems.
The proposed Spectral Coupled Dictionary Learning (SCDL)
algorithm capitalizes on the Sparse Representations frame-
work [15] and extents it by introducing a Coupled Dictionary
Learning process, for estimating responses from spectral bands
that were not explicitly acquired by the detectors. Furthermore,
we solve the SCDL problem by formulating the spectral super-
resolution problem within the highly efficient Alternating
Direction Method of Multipliers optimization framework.

Fig. 1: A case of spectral super resolution in Earth Observation.
A model built on high-low resolution pairs from two instruments is
introduced for increasing spectral resolution.

The particular algorithmic framework can be considered
in a wide range of remote sensing applications for Earth
Observation. For instance, acquired imagery from low spectral
resolution satellites, e.g., MODIS, could be enhanced using
images acquired over the same region from higher resolution
spectrometers aboard newer platforms, e.g., the EO-1 Hyper-
ion, as shown in Fig. 1. Additionally, such a scheme could be
considered for easing communication requirements by training
with high-resolution data during the commission phase and by
reducing the required bandwidth during normal operation.
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The key contributions of this work include:
• the formulation of a novel, post-acquisition approach for

the enhancement of low-spectral resolution multi- and
hyperspectral imagery;

• the design of an efficient coupled sparse dictionary
learning architecture, relying on the alternating direction
method of multipliers, for efficient identification of the
dictionaries;

• the systematic evaluation of the proposed spectral reso-
lution enhancement approach on a variety of challenging
real multi- and hyperspectral datasets.

A key benefit of the proposed method is its flexibility, since
it can be considered for the enhancement of various pairs of
low and high resolution imagery.

The rest of this paper is structured as follows. Section II
provides an overview of the related state-of-the-art. Section III
presents the spectral super-resolution scheme of multispectral
and hyperspectral imagery considered in this work, whereas
Section IV exposes the coupled spectral dictionary learning
formulation. Section V reports the experimental results, while
conclusions and extensions of this work are presented in
Section VII.

II. RELATED WORK

In the following section, we overview several representative
approaches that address the problems of spatial and spectral
resolution enhancement of hyperspectral imagery, as well as
techniques for learning coupled feature spaces. To the best of
our knowledge, this is the first work that applies a coupled
sparse dictionary learning architecture to the problem of
spectral resolution enhancement of HSI data. This work is an
extension of an earlier approach [16], where a sparsity-based
architecture was proposed, employing independent dictionaries
that model the low and high spectral resolution feature spaces.

A. Hyperspectral Resolution Enhancement

Although enhancing the spatial, spectral, and temporal res-
olution of HSI imagery is a subject of significant research,
most of the efforts have focused on improving the spatial
resolution [17]. State-of-the-art spatial resolution enhance-
ment approaches may be classified into two representative
categories, namely, pan-sharpening and spatio-spectral fusion
techniques. On the one hand, pan-sharpening combines low-
spatial resolution multi- and hyperspectral scenes, along with
corresponding high spatial resolution panchromatic images, to
synthesize spatially super-resolved 3D data cubes [18]–[20].
This is achieved either by replacing the component containing
the spatial structure from the HSI image with the panchromatic
image [21], or by decomposing the panchromatic image and by
re-sampling it to multispectral bands [22]. In both cases, pan-
sharpening methods rely on a particular architecture where a
high spatial resolution panchormatic camera shares the same
field-of-view with a limited resolution spectral imager. This
requirement restricts the acquisition set-up and it does not
consider post-acquisition enhancement.

On the other hand, spatio-spectral fusion approaches im-
prove spatial resolution by exploiting the relation between the

spatial and the spectral variations of HSI scenes. Bieniarz et
al. [23] enhanced the spatial dimension of HSI by employing
a sparse spectral unmixing technique and by fusing the re-
sults with the multispectral imagery. Similarly, a joint super-
resolution and unmixing approach was proposed in [24], based
on a sparse representation in the spatial domaim and a spectral
unmixing in the spectral domain.

A significant class of methods considers transferring infor-
mation between different feature spaces. For instance, Yang
et al. [25] solved the traditional RGB image super-resolution
problem by constructing joint dictionaries for the low and
the high-resolution spaces under the assumption that the two
representations share the same sparse coding. As an extension,
in [26] a coupled dictionary learning scheme based on bilevel
optimization was proposed and applied on the problems of
single image super-resolution and compressed sensing recov-
ery. Although the specific bilevel dictionary learning approach
achieves low reconstruction error, the same, possibly sub-
optimal, sparse coding is still utilized among the different
feature spaces. Consequently, accurate recovery is not assured
by the jointly learned dictionaries. In contrast, He at al. [27]
propose a beta process based coupled dictionary learning
approach, by learning sparse representations with the same
sparsity measure, but with different values in the coupled
feature spaces.

Recently, Guo et al. [28] tackled the image pan-sharpening
problem by utilizing an online coupled dictionary learning
technique, where a low-spatial resolution multispectral image
is fused with a high spatial resolution panchromatic image to
obtain a high spatial resolution multispectral image. Contrary
to the aforementioned technique, in Section IV we propose
a novel scheme that efficiently learns coupled feature spaces,
overcoming the limitations arising from independent dictio-
nary learning.

Erturk et al. [29] proposed a spatial super-resolution tech-
nique, utilizing a fully constrained least squares spectral un-
mixing scheme, with a spatial regularization based on modified
binary particle swarm optimization. Approaches based on
Sparse Representations (SR) have also been considered for
spatio-spectral fusion. In [30], Dong et al. proposed a non-
negative sparsity-based hyperspectral super-resolution tech-
nique, combining a low-resolution hyperspectral image with a
high-resolution RGB image, where a single dictionary learning
scheme is employed for modeling the relations between the
low-spectral resolution HSI and the corresponding high reso-
lution RGB images. Additionally, the authors in [31] proposed
a Bayesian sparse coding scheme, utilizing a Bayesian non-
parametric dictionary learning, in order to enhance the spatial
variation of multi- and hyperspectral imagery.

In contrast to spatial super-resolution, enhancing the spectral
dimension of HSI scenes has drawn little attention. The work
most closely related to the proposed method was presented
in [32] where Charles and Rozell introduce a sparsity-based
spectral super-resolution approach of hyperspectral images by
learning a dictionary of spectral signatures that decomposes
the spectral response of each “hyper-pixel”. Specifically, they
enhance the spectral dimension of multispectral to hyperspec-
tral level by learning an approximation to the data manifold.
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Fig. 2: SCDL System Block Diagram: The system takes as input a hypercube acquired with a limited number of spectral bands and produces
an estimate of an extended spatio-spectral hypercube. During the training phase, multiple high and low-spectral resolution “hyper-pixels”
are extracted from training hypercubes. Given these “hyper-pixels” pairs, a coupled sparse dictionary learning scheme is employed for
learning two sparsifying dictionaries, corresponding to the two resolution cases. During runtime, low resolution “hyper-pixels” are mapped
to the low resolution dictionary and the identified sparse coding coefficients are subsequently combined with the high resolution dictionary
for producing the final estimates.

As an extension, the same authors introduced in [33] a re-
weighted `1 spatial filtering technique that improves spectral
super-resolution.

Another spectral resolution enhancement technique is
demonstrated in [34], where the authors consider geographi-
cally co-located multispectral and hyperspectral oceanic water-
color images and they enhance the limited multispectral mea-
surements utilizing a sparse-based approach. First, they use
a spectral mixing formulation and they define the measured
spectrum for each pixel as the sum of the weighted material
spectra. The desired high-spectral resolution spectra are ex-
pressed as the linear combination between a blurring matrix
and the measured spectra. This problem is solved via a sparse
decomposition technique.

As a last point, we must note that over the last years,
multiple techniques exploiting the low-rank Matrix Comple-
tion framework, a generalization of the SR framework, have
been introduced for super-resolving low spatial resolution
HSI scenes. For example, a novel approach was proposed in
[13], where the authors estimate a high spatial and spectral
resolution hypercube from undersampled snapshot mosaic im-
agery [35]. Although we consider such datasets, the proposed
method is applicable to arbitrary low-high resolution pairs.

III. SPECTRAL RESOLUTION ENHANCEMENT

The proposed approach synthesizes a high-spectral reso-
lution hypercube from its low-spectral resolution acquired
version by capitalizing on the Sparse Representations learning
framework [15]. According to the SR framework, various
spectral resolution “hyper-pixels” can be represented as sparse
linear combinations of elements from learned over-complete
dictionaries. Traditional approaches consider a set of low and
high-spectral resolution hyperspectral image pairs and assume
that these images are generated by the same statistical process
under different spectral resolution, and as such, they share
the same sparse coding, with respect to their corresponding
low Dl ∈ RP×N , and high Dh ∈ RM×N , spectral resolu-
tion dictionaries. Each low-spectral resolution “hyper-pixel”
sl ∈ RP can thus be expressed as a sparse linear combination,

encoded in w ∈ RN , of elements from a dictionary matrix,
Dl ∈ RP×N , composed of “hyper-pixel” atoms from low-
spectral resolution training datacubes, according to:

sl = Dlw. (1)

Recovery of the sparse coding vector w ∈ RN is accomplished
by solving the following minimization problem:

min
w
||w||0 subject to ||sl −Dlw||22 < ε, (2)

where ε denotes the approximation error modelling the system
noise, and ||w||0 = #(i|wi 6= 0) stands for the `0 pseudo-
norm counting the number of non-zero elements in a vector.
Although the `0-norm is theoretically the best regularizer for
promoting sparsity, it leads to an intractable optimization. This
problem is alleviated by replacing the `0-norm by its convex
surrogate `1-norm, where `1 =

∑
i |wi|, leading to robust

solutions and efficient optimization. The optimization problem
is therefore formulated as:

w? = argmin
w
||sl −Dlw||22 + ρ||w||1, (3)

where the parameter ρ controls the impact of the sparsity on
the solution. To obtain the high-resolution signal, the optimal
sparse code w? from (3), is directly mapped onto the high-
spectral resolution dictionary Dh ∈ RM×N , to synthesize the
high-spectral resolution “hyper-pixel”, according to:

sh = Dhw
?. (4)

The concatenation of all the recovered high-spectral resolution
“hyper-pixels”, synthesizes the high-spectral resolution three-
dimensional hypercube, as shown in Figure 2.

The two main challenges pertaining to the estimation of the
high spectral resolution hypercubes are related to the sufficient
sparsity measure for the sparse coding vector w and the proper
construction of the low and high spectral resolution dictionary
matrices, Dl and Dh, to efficiently sparsify the input signals.
A straightforward strategy to create these dictionaries is to
randomly sample multiple registered “hyper-pixels” extracted
from corresponding low and high-spectral resolution training
scenes and to use this random selection as the sparsifying
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dictionary. This strategy however is extremely inefficient since
no information regarding the generative power of these ex-
amples is known. Alternatively, a joint feature space can be
constructed and a single dictionary learning scheme like the
K-SVD [36] can be considered [16].

IV. COUPLED SPARSE DICTIONARY LEARNING

The proposed SCDL algorithm relies on generating coupled
sparse dictionaries which jointly encoding two coupled feature
spaces, the observation low-spectral resolution Sl ∈ RP×K ,
and the latent high-spectral resolution Sh ∈ RM×K , where
the signals have sparse representations in terms of the trained
dictionaries. The main task is to find a coupled dictionary
pair Dl and Dh for the spaces Sl and Sh, respectively.
Formally, the ideal pair of coupled dictionaries Dl and Dh

can be estimated by solving the following set of sparse
decompositions:

argmin
Dh,D`,Wh,W`

||Sh −DhWh||2F + ||Sl −D`W`||2F+

λh||Wh||1 + λ` ||W`||1, subject to Wh = W`,

||Dh(:, i)||2 ≤ 1, ||D`(:, i)||2 ≤ 1 (5)

where Wl is the sparse coefficient matrix corresponding to the
low-spectral resolution feature space, Wh stands for the sparse
coefficient matrix corresponding to the high-spectral resolution
feature space, while λh and λl denote the parameters that
control the sparsity penalty for each individual sub-problem.

Coupled dictionary learning considers the joint identifica-
tion of two dictionary matrices Dh, Dl, representing the
coupled feature spaces Sh and Sl, such that both hyper-
pixels sh(i) ∈ Sh and sl(i) ∈ Sl share exactly the same
sparse coding vector in terms of Dh and Dl, respectively. A
straightforward approach is to concatenate the coupled feature
spaces and utilize a common sparse representation W, able
to reconstruct both Sh and Sl, by solving the optimization
problem:

argmin
D,W

||S̄− D̄W||F + λ||W||1

subject to ||D̄(:, j)||22 ≤ 1, j = {1, ...,K}, (6)

where S̄ =

[
Sh
Sl

]
, D̄ =

[
Dh

Dl

]
, and λ is the sparsity

regularization term corresponding to the coupled feature space.
In addition to sparsity, the elements of the learnt dictionary are
also normalized to unit `2 norm. As a result, the problem posed
in (6) is converted into a standard, single sparse decomposition
problem, that can be efficiently solved via existing dictionary
learning algorithms, such as the K-SVD [36]. However, such
a strategy is optimal only in the concatenated feature space,
and not in the individual feature spaces of Sh and Sl. Thus,
when presented only with examples from Sl, the generated
low spectral resolution dictionary D∗

l may adhere to different
optimal space coding compared to D̄.

A major limitation of strategies relying either on random
collection of signal-pairs or on single dictionary learning, is
their inability to guarantee that the same sparse coding can
be independently utilized by the different signal resolutions.

In other words, during the application of a spectral super-
resolution process, only low-resolution signals are available.
Thus, although one could consider only the low-resolution part
of a learned dictionary, no constraints on the optimality of the
identified sparse codes exists when high-resolution signals are
considered. To overcome this limitation, we propose learning
a compact dictionary from low and high-spectral resolution
“hyper-pixels”.

We propose a computationally efficient coupled dictionary
learning technique, based on the Alternating Direction Method
of Multipliers (ADMM) [37]–[40] formulation, that converts
the constrained dictionary learning problem posed in (5),
into an unconstrained version which can be efficiently solved
via alternating minimizations. Formally, we consider the ob-
servation signals, Sl = {sl}Ni=1, and Sh = {sh}Pi=1. The
main task of coupled dictionary learning is to recover both
the dictionaries Dh and Dl with their corresponding sparse
codes Wh and Wl, by solving the following sparse matrix
decomposition problem:

(Dh,Wh) = argmin||DhWh − Sh||F + λh||Wh||1
(Dl,Wl) = argmin||DlWl − Sl||F + λl||Wl||1,
||Dh(:, j)||22 ≤ 1, ||Dl(:, j)||22 ≤ 1, and Wh = Wl

(7)

To apply the ADMM scheme in our spectral dictionary
learning procedure, we reformulate the `1-minimization prob-
lem in (7) as

min
Dh,Wh,Dl,Wl

||Sh −DhWh||2F + ||Sl −DlWl||2F

+λl||Q||1 + λh||P||1
subject to P−Wh = 0,Q−Wl = 0,Wh −Wl = 0,

||Dh(:, i)||2 ≤ 1, ||Dl(:, i)||2 ≤ 1

(8)

The ADMM scheme takes into account the separate structure
of each variable posed in (8), relying on the minimization of
its augmented Lagrangian function:

L(Dh,Dl,Wh,Wl,P,Q, Y1, Y2, Y3) =
1

2
||DhWh − Sh||2F+

1

2
||D`W` − S`||2F + λh||P||1 + λ`||Q||1+ < Y1,P−Wh >

+ < Y2,Q−W` > + < Y3,Wh −W` > +
c1
2
||P−Wh||2F+

c2
2
||Q−W`||2F +

c3
2
||Wh −W`||2F (9)

where Y1, Y2 and Y3 stand for the Lagrange multiplier
matrices, while c1 > 0, c2 > 0 and c3 > 0 denote the step
size parameters. Following the general algorithmic strategy of
the ADMM scheme, we seek for the stationary point, solving
iteratively for one of the variables, while keeping the others
fixed. As a result, we create the following sequence of update
rules.

• Sparse Coding Sub-problems: For minimizing the aug-
mented Lagrangian function with respect to the sparse
coding matrices Wl and Wh, we solve the individual
sparse coding problems:

Wh = argmin
Wh

L = ∇Wh
L

Wl = argmin
Wl

L = ∇Wl
L

(10)
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Setting, ∇Wh
L = ∇Wl

L = 0, the sub-problems admit
closed-form solutions:

Wh = (DT
h ·Dh + c1 · I + c3 · I)−1 · (DT

h · Sh+
Y1 − Y3 + c1 ·P + c3 ·Wl)

Wl = (DT
l ·Dl + c2 · I + c3 · I)−1 · (DT

l · Sl+
Y2 + Y3 + c2 ·Q + c3 ·Wh)

(11)

• Sub-problems P and Q

∇P

(
λh||P||1+ < Y1,P−Wh > +

c1
2
||P−Wh||2F

)
∇Q

(
λl||Q||1+ < Y2,Q−Wl > +

c2
2
||Q−Wl||2F

)
(12)

Setting, ∇PL = ∇QL = 0, the sub-problems can be
re-formulated as:

P = Sλh

(∣∣∣Wh −
Y1
c1

∣∣∣)
Q = Sλl

(∣∣∣Wl −
Y2
c2

∣∣∣), (13)

where Sλh and Sλl denote the soft-thresholding opera-
tors, defined as:

Sλ(x) = sign(x) ·max(|x| − λ, 0), (14)

where λ > 0 stands for the threshold value.
• Sub-problems Dh and Dl

For a fixed set of Wh, Wl, P and Q, the dictionaries
Dh and Dl can be updated as:

Dh = argmin
Dh

L = ∇Dh
L (15)

Dl = argmin
Dl

L = ∇Dl
L⇔

∇Dh

(1
2
||Sh −DhWh||2F

)
= −WT

h (Sh −DhWh)

∇Dl

(1
2
||Sl −DlWl||2F

)
= −WT

l (Sl −DlWl)

(16)

Setting ∇Dh
= ∇Dl

= 0, the high and the low-spectral
resolution dictionaries are updated column by column
adhering to the following iterative scheme:

φh = Wh(j, :) ·Wh(j, :)
T

φl = Wl(j, :) ·Wl(j, :)
T ,

(17)

and

D
(k+1)
h (:, j) = Dh(:, j)

(k)(:, j) +
Sh ·Wh(j, :)

φh + δ
(18)

D
(k+1)
l (:, j) = Dl(:, j)

(k)(:, j) +
Sl ·Wl(j, :)

φl + δ

where k denotes the number of iterations, δ stands for
a small regularization factor, while Dh(:, j) and Dl(:, j)
represent the j-th column of Dh and Dl, respectively.
Finally, the Lagrangian multiplier matrices Λh and Λl

are updated as:

Y
(k+1)
1 = Y

(k)
1 + c1(P−Wh)

Y
(k+1)
2 = Y

(k)
2 + c2(Q−Wl)

Y
(k+1)
3 = Y

(k)
3 + c3(Wh −Wl)

(19)

In our setup, we set c1 = c3 = 0.8 and c2 = 0.6. The
derivations of the individual sub-problems for the proposed
SCDL-ADMM based dictionary learning scheme are shown in
the Appendix. The overall algorithm for learning the coupled
dictionaries, which correspond to the high and the low-spectral
resolution feature spaces, is summarized in Algorithm 1.

Algorithm 1 Spectral Coupled Dictionary Learning
Input: training examples Sh and Sl, number of iterations K
and step size parameters c1, c2, c3.
Initialize: Dh ∈ RM×N and Dl ∈ RP×N are initialized
by a random selection of the columns of Sh and Sl with
normalization; Initialize Lagrange multiplier matrices Y1 =
Y2 = Y3 = 0.
for k = 1, · · · ,K do

1) Update Wh and Wl via Eq. (11)
2) Update P and Q via Eq. (13)
3) for j = 1, · · · , N do

• Update φh and φl via Eq. (17)
• Update the two dictionaries Dh and Dl column by

column via Eq. (18)
end

• Normalize Dh and Dl between [0, 1]
• Update Lagrange multiplier matrices Y1, Y2 and Y3

via Eq. (19)
end

V. EXPERIMENTAL EVALUATION

In this Section, we evaluate the performance of the proposed
SCDL scheme when applied to the spectral super-resolution
of hyperspectral imagery in terms of the quality of the es-
timated high spectral resolution hypercube. The performance
is quantified using the following challenging datasets: (a) the
multispectral CAVE indoors image data-base [41], (b) the out-
doors snapshot spectral dataset acquired by a snapshot spectral
camera equipped with the IMEC’s Spectrally Resolvable De-
tector Array [42]–[44], and (c) the EO-1 NASA’s Hyperion
satellite hyperspectral Earth Observation scenes [45].

The CAVE database includes 32 multispectral images ac-
quired indoors under controlled illumination conditions. The
acquired images have a spatial resolution of 512×512 pixels,
resolving 31 spectral bands in the 400 to 700nm range. For
the EO-1 satellite data, we conducted experiments on data ac-
quired by NASA’s Hyperion hyperspectral instrument. Due to
its high spectral coverage, Hyperion scenes have been widely
utilized in the remote sensing community for classification
and spectral unmixing purposes. We considered hyperspectral
scenes of the Hawaii island, acquired on August 30, 2015,
and utilized 67 spectral bands in the visible and near infrared
spectrum range, from 436.9 to 833.83nm.
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Finally, we utilized hyperspectral data acquired by IMEC’s
snapshot mosaic sensors. These flexible sensors optically mul-
tiplex the three-dimensional spatio-spectral information on a
two-dimensional CMOS detector array, where a layer of Faby-
Perot spectral filters is deposited on top of the detector array.
The hyperspectral data is initially acquired in the form of
two-dimensional mosaic images. In order to generate the 3D
hypercubes, the spectral components are properly rearranged
into separate spectral bands. In our experiments, we utilize
the 5 × 5 snapshot mosaic hyperspectral sensor, revealing 25
bands in the VNIR spectrum range from 600 to 875nm.

A. Implementation and evaluation metrics

Regarding the dictionary training phase, three pairs of low
and high spectral resolution dictionaries were prepared, one
for each sensor data, while for all three cases, we utilized
10 training hypercubes, from which 100.000 training hyper-
pixels were randomly extracted. In order to generate the
corresponding low-spectral resolution hypercubes, the high-
spectral resolution training hypercubes were downsampled
along the spectral dimension. We experimented with spectral
sub-sampling factors of 2, 3, and 4, corresponding to 16, 11,
and 8 input spectral bands for Columbia; 34, 23, and 17 for
Hyperion; and 13, 9, and 7 for the IMEC dataset. The number
of the representative dictionary atoms that we utilized in the
proposed SCDL coupled dictionary learning scheme was set
to 512, balancing the computational cost with the robustness
of the representation.

To validate the quality of the reconstructed hypercubes, we
employ the Peak Signal to Noise Ratio (PSNR) [46] given by:

PSNR = 10 log10[L
2
max/MSE(x, y, λ)],

where L is the maximum pixel value of the scene, λ denotes
the spectral dimension, and MSE stands for the mean square
error, defined as:

MSE(x, y, λ) =

∑
x,y,λ

[
Sh(x,y,λ)

− Sl(x,y,λ)

]2
nx, ny, λ

, (20)

where x and y denote the spatial dimensions of the input and
the synthesized images Sl and Sh.

Additionally, each recovered spectral band is compared
against the corresponding ground truth spectral band in terms
of the Structural Similarity Index Metric [47], a psychophys-
ically modeled error metric defined as:

SSIM(x, y) =
(2µxµy + c1) · (2σxy + c2)

(µ2
x + µ2

y + c1) · (σ2
x + σ2

y + c2)
, (21)

where µ and σ stand for the mean value and the standard
deviation, respectively. The reported figures for PNSR and
SSIM correspond to the average value over all spectral bands.

B. Experimental Results

In order to validate the merits of the proposed spectral
super-resolution scheme, we first compare the synthesized
3D hypercubes against the ground truth cubes, and against
several state-of-art techniques, namely: the simplistic scheme

of cubic interpolation among the available spectral bands, the
sparse-based scheme of spectral resolution enhancement of
hyperspectral imagery using K-SVD dictionary learning [16],
and the `1 spatial filtering approach [32], [33]. In order to
achieve a fair comparison with the K-SVD dictionary learning
technique, we utilize the same number of atoms for dictionary
learning and the same sparsity constraints, while for the
reweighted `1 spatial filtering scheme (RWL1-SF) [32] we fix
the parameters on their proposed default settings.

(a) Ground Truth 20th, SSIM: 0.94 (b) Ground Truth 54th, SSIM: 0.91

(c) 20th Band ×4, SSIM:0.99 (d) 54th Band ×4, SSIM:0.98

Fig. 3: Hyperion spectral bands reconstruction: The full spectrum
is composed of 67 bands in the VIS-NIR region, while the sub-
sampling factor is set to 4, thus the full resolution hypercube is
estimated from 17 input spectral bands. We observe that under real
life conditions, the proposed scheme produces a significant quality
improvement operating in satellite hyperspectral imagery.

Figures 3, 4, and 5 showcase representative bands from
reconstructed hypercubes obtained by the SCDL method,
applied on Hyperion’s Hawaii hypespectral scene, on CAVE’s
synthetic multispectral flower scene, and on IMEC’s 5 × 5
snapshot mosaic roof imagery, respectively. In Figure 3, we
subsample the hyperspectral scene by a spectral factor of
4 and we reconstruct the full spectrum composed of 67
spectral observations. In Figures 4 and 5 we downscale the
hypercubes by a spectral factor of 2 and we synthesize the full
spectrum composed of 25 and 39 spectral bands, respectively.
We observe that the reconstructed spectral bands present high
similarity and faithfully preserve important image features.
For example, the spatial features of the images, like the high
frequency content of the flower data in Figure 4, are correctly
synthesized while in Figure 5, one can easily notice how
different image regions, corresponding to different material,
are reliably estimated. The PSNR errors of the SCDL scheme
for the recovery of the complete three-dimensional hypercubes
are 46.8 db for the Hyperion, 31.6 db for IMEC and 35.8 db
for CAVE.

In order to appreciate the quality of reconstruction, we
present in Figure 6comparative results with state-of-the-art
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(a) Ground Truth, 677.97nm (b) RWL1-SF ×3, PSNR: 21.1 dB

(c) SSR-K-SVD ×3, PSNR: 29.4 dB (d) SCDL ×3, PSNR: 35.1 dB

Fig. 8: In this experiment we consider the 5th band of the rose hyperspectral scene at 677.97nm, acquired by a snapshot spectral camera
equipped with IMEC’s 5×5 snapshot mosaic hyperspectral sensor. The sub-sampling factor is set to ×3, while we recover the full hypercube
from only 9 input spectral observations. Results indicate the SCDL scheme outperforms the comparable state-of-the art approaches, both
visually and in terms of error.

(a) Ground Truth 8th Band (b) Ground Truth 30th Band

(c) SCDL ×2 SSIM: 0.99 (d) SCDL ×2, SSIM: 0.99

Fig. 4: CAVE flower multispectral scene recovery: (a,b) Ground truth
spectral bands from the 31 band hypercube. (c,d) SCDL reconstructed
spectral bands for sub-sampling factor of 4, i.e., 8 bands.

methods applied on the Egyptian statue scene from the CAVE
data-base. We set the downsampling factor to ×4, and thus
we recover the full spectrum composed of 31 spectral bands,
from only 8 input spectral observations. We observe that both
the Cubic Interpolation and the reweighted spatial filtering

techniques introduce artifacts around the head of the statue
and at the text written on the color plate. The K-SVD spectral
super-resolution approach performs better compared to cubic
and RWL1-SF, but not as well as the proposed SCDL scheme,
which exhibits the highest accuracy with the ground three-
dimensional hypercube, both visually and quantitatively in
terms of the achieved PSNR error metric: the PSNR recovery
of the three-dimensional hypercube using the K-SVD spectral
resolution enhancement scheme is 41.8 dB, while the PSNR
of the SCDL scheme is 45.2 dB.

Figure 7 illustrates the performance of the compared tech-
niques when applied on the roof hyperspectral scene, acquired
by IMEC’s 5 × 5 snapshot mosaic sensor. Specifically, we
depict the spectral band acquired at 669.8nm. In this scenario,
the sub-sampling factor is set to 2 and we estimate the 25-band
full spectrum from 13 spectral observations. In contrast to the
rest of the methods that produce false colouring effects and
noisy recoveries, the SCDL algorithm depicts high similarity
with the original ground truth spectral data, both visually and
quantitatively, in terms of the PSNR error metric.

An indicative set of reconstruction is depicted in Figure
8, where the performance of different methods is evaluated
on the rose scene dataset. In this experiment, the full 25
spectral bands spectrum is recovered from 9 spectral inputs,
and we illustrate the spectral band acquired at 677.97nm.
Visual observation reveals that the K-SVD technique intro-
duces severe artifacts at the high spatial frequency regions
like the edges of the flower. On the other hand, although the
RWL1-SF approach produces a smooth representation of the
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(a) Ground Truth, 636.57nm (b) Ground Truth, 684.73nm

(c) Ground Truth, 724.24nm (d) Ground Truth, 834.59nm

(e) SCDL, SSIM: 0.97 (f) SCDL, SSIM: 0.96

(g) SCDL, SSIM: 0.94 (h) SCDL, SSIM: 0.92

Fig. 5: Roof hyperspectral scene: In this experiment we investigate
the performance of our SCDL scheme when applied on hyperspectral
data acquired by IMEC’s snapshot 5× 5 sensor. Top row: Original
spectral bands. Bottom row: Proposed system’s reconstructed spectral
bands. The full spectrum is composed of 25 bands, while the sub-
sampling factor is set to 2.

spectral representation of the scene, color (spectral) effects
are introduced. The SCDL approach provides an accurate
and smooth approximation of the ground truth, revealing
significant details over all regions of this challenging scene.

Finally, PSNR errors of the comparable techniques applied
on several test scenes from CAVE’s and IMEC’s HSI datasets
are provided in Tables I and II, respectively. The results
suggest that the proposed spectral super-resolution scheme out-
performs all other competing techniques on both test datasets.

(a) Ground Truth 23th Band

(b) RWL1-SF ×4, PSNR=26.1 dB

(c) KSVD-SSR ×4, PSNR=41.8 dB

(d) SCDL ×4, PSNR=45.2 dB

Fig. 6: CAVE data recovery, Egyptian Statue scene: Comparison with
the state-of-the-art approaches for sub-sampling factor ×4.

C. Sensitivity Analysis

To understand the sensitivity of the algorithm, we evaluate
the reconstruction performance of the coupled trained dictio-
naries over a varying number of training examples. In Figure 9,
we provide the PSNR values for the reconstruction of the
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(a) Ground Truth Band, 669.81nm

(b) RWL1-SF ×2, PSNR: 21.3 dB

(c) SSR-K-SVD ×2, PSNR: 34.7 dB

(d) SCDL ×2, PSNR: 37.1 dB

Fig. 7: Roof hyperspectral scene: Comparison with the state-of-the-
art. In this experiment we investigate the performance of the SCDL
scheme, when applied on snapshot spectral imaging data for down-
sampling factor ×2, while we recover the full spectrum composed of
25 bands from 13 input spectral observations.

Egyptian-statue scene, when the sub-sampling factor is set to
×4, as a function of the number of training examples, i.e.,
[10.000, 20.000, 30.000, 50.000, 70.000, 90.000]. Results indi-

TABLE I: CAVE multispectral database: Quantitative results of the
proposed SCDL scheme with the state-of-the-art in terms of PSNR
error with down-sampling factors of ×2, ×3 and ×4.

Image

Sc
al

e

C
ub

ic

R
W

L
1-

SF

SS
R

-K
SV

D

SC
D

L

ballons
2 35.4 25.2 38.0 40.6
3 36.2 18.7 36.8 37.9
4 28.8 22.7 31.6 37.4

pompoms
2 32.4 23.0 34.4 36.5
3 32.0 18.9 33.0 34.9
4 27.5 16.6 30.4 32.4

flowers
2 37.0 24.1 37.2 40.1
3 35.1 16.0 34.8 36.2
4 33.4 19.5 34.8 35.8

egyptian statue
2 43.5 25.0 47.4 48.7
3 42.4 23.8 43.5 44.5
4 36.7 26.0 41.8 45.2

stuffed toys
2 34.6 23.1 38.6 40.6
3 32.0 18.8 32.1 32.6
4 27.5 19.1 31.5 33.4

average
2 36.6 24.1 36.5 39.0
3 36.9 19.2 36.1 37.2
4 30.8 20.7 34.0 36.8

TABLE II: IMEC’s hyperspectral scenes: Quantitative performance
evaluation of the SCDL scheme with the state-of-the-art in terms of
PSNR error with down-sampling factors of ×2, ×3 and ×4

Image

Sc
al

e

C
ub

ic

R
W

L
1-

SF

SS
R

-K
SV

D

SC
D

L

roof
2 33.5 21.3 34.7 37.0
3 31.9 18.0 32.5 33.6
4 28.4 16.3 30.0 31.6

window
2 30.7 23.7 38.5 40.3
3 28.9 22.1 31.9 32.0
4 26.0 20.4 33.6 34.6

teddy-bear
2 28.8 20.4 37.5 41.1
3 26.9 17.5 29.6 32.4
4 22.8 14.5 31.3 32.6

keys
2 30.5 24.6 37.8 38.1
3 28.4 24.6 30.5 31.3
4 24.4 22.8 30.5 31.3

croissant
2 28.7 20.9 36.7 39.8
3 26.8 15.0 31.0 31.7
4 22.5 13.7 31.7 33.1

average
2 30.4 26.3 37.0 39.3
3 28.6 19.4 31.1 32.2
4 24.8 17.5 31.4 32.6

cate that the performance of the SCDL method monotonically
increases, based on the amount of the input training examples,
however the performance gains are reduced with very large
datasets.

Regarding the testing phase, our algorithm by design con-
tains a single parameter, λ, which is responsible for balancing
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Fig. 9: CAVE’s Egyptian Statue 3D multispectral scene (512×512×
31): PSNR as a function of the number of training examples. The
sub-sampling factor is set to ×4.

the sparsity of our solution with respect to the fidelity of the
reconstruction and is the same for both dictionaries.

Fig. 10: CAVE egyptian-statue 3D multispectral scene (512× 512×
31): (Left) PSNR performance at different sparsity levels. (x4)
sub-sampling factor. (Right) Run time comparisons of the three-
dimensional hypercube reconstruction as a function of the sparsity
parameters.

Additionally, in Figure 10 we investigate the performance
of our method in terms of the PSNR metric, over a grid of
sparsity parameters λ, i.e λ = [0.1, 0.2, 0.3, 0.4, 0.5], when
applied to CAVE’s multispectral Egyptian-statue 3D scene.
In this simulation, the sub-sampling factor was set to 4. We
observe that the amount of sparsity in the representation has
a strong impact on the quality of the recovery of the three-
dimensional hypercube. In our experiments, we empirically
set the sparsity parameter λ equal to 0.2, achieving both high
quality approximation with short execution time.

VI. CONCLUSION

In this work, we proposed a novel spectral super-resolution
architecture for multi- and hyperspectral imagery, employing
the mathematical framework of Sparse Representations though
a Coupled Sparse Dictionary Learning algorithm for encoding
the relations between high and low-spectral resolution scenes.
To achieve this goal, an efficient formulation is proposed
based on the Alternating Direction Method of Multipliers.
Experimental results suggest that high quality reconstruction
of both remote sensing and terrestrial data is attainable by the

proposed scheme. Furthermore, the proposed scheme can be
extended to handle arbitrary low-to-high resolution enhance-
ments by simple modifications of the joint dictionary learning
process, and offers the capability of addressing additional
sources related to HSI image degradation. Experiments results
applied on a variety of spectral image datasets, demonstrate
that the proposed SCDL coupled dictionary learning scheme
surpasses traditional methods based on single dictionary learn-
ing.
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APPENDIX

Derivations of the individual sub-problems for the SCDL-
ADMM based dictionary learning scheme, as described in
Section IV.

• Sub-problem Wh

Wh = argmin
Wh

L = ∇Wh
L⇔

∇Wh

(1
2
||Sh −DhWh||22+ < Y1,P−Wh > +

< Y3,Wh −Wl > +
c1
2
||P−Wh||22 +

c3
2
||Wh −Wl||22

)
= −DT

h · (Sh −DhWh)− Y1 + Y3 − c1 · (P−Wh)+

c3 · (Wh −Wl)
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Setting ∇Wh
L = 0 ⇔

−Dh · Sh + DT
h ·Dh ·Wh − Y1 + Y3 − c1 ·P + c1 ·Wh+

c3 ·Wh − c3 ·Wl = 0⇔
(DT

h ·Dh + c1 · I + c3 · I) ·Wh = DT
h · Sh + Y1 − Y3+

c1 ·P + c3 ·Wl ⇔
Wh = (Dh ·Dh + c1 · I + c3 · I)−1 · (DT

h · Sh + Y1 − Y3+
c1 ·P + c3 ·Wl)

• Sub-problem Wl

Wl = argmin
Wl

L = ∇Wl
L⇔

∇Wl

(1
2
· ||Sl −DlWl||22+ < Y2,Q−Wl > +

< Y3,Wh −Wl > +
c2
2
||Q−Wl||22 +

c3
2
||Wh −Wl||22

)
= −DT

l · (Sl −DlWl)− Y2 − Y3 − c2 · (Q−Wl)+

c3 · (Wh −Wl)

Setting ∇Wl
L = 0 ⇔

−Dl · Sl + DT
l ·Dl ·Wl − Y2 − Y3 − c2 ·Q + c2 ·Wl−

c3 ·Wh = 0⇔
(DT

l ·Dl + c2 · I + c3 · I) ·Wl = DT
l · Sl + Y2 + Y3+

c2 ·Q + c3 ·Wh − c3 ·Wl ⇔
Wl = (Dl ·Dl + c2 · I + c3 · I)−1 · (DT

l · Sl + Y2 + Y3+

c2 ·Q + c3 ·Wh)

• Sub-problem P

P? = argmin
P

L = ∇PL⇔

∇P(λh||P||1+ < Y1,P−Wh > +
c1
2
||P−Wh||22)

– For P > 0,

∇PL = λh · I + c1 · (P−Wh) + Y1

Setting ∇PL = 0,

P = Wh −
1

c1
· (Y1 + λh · I)

– For P < 0,

∇PL = −λh · I + c1 · (P−Wh) + Y1

Setting ∇PL = 0,

P = Wh −
1

c1
· (Y1 − λh · I)

Combining,

P > 0⇔Wh −
1

c1
· Y1 >

1

c1
· λh · I

P < 0⇔Wh −
1

c1
· Y1 < −

1

c1
· λh · I

we have,

|Wh −
1

c1
· Y1| ≤

1

c1
· λh · I,

Consequently,

P? = Sλh

(
|Wh −

Y1
c1
|
)
,

where Sλh denotes the soft-thresholding operator, defined
as:

Sλh(x) = sign(x) ·max(|x| − λh, 0)

• Sub-problem Q

Q? = argmin
Q

L = ∇QL⇔

– For Q > 0,

∇QL = λl · I + Y2 + c2 · (Q−Wl)

Setting ∇QL = 0,

Q = Wl −
1

c2
· (Y2 + λl · I)

– For Q < 0,

∇QL = λl · I + Y2 + c2 · (Q−Wl)

Setting ∇QL = 0,

Q = Wl −
1

c2
· (Y2 − λl · I)

Combining,

Q > 0⇔Wl −
1

c2
· Y2 >

1

c2
· λl · I

Q < 0⇔Wl −
1

c2
· Y2 < −

1

c2
· λl · I

we have,

|Wl −
1

c2
· Y2| ≤

1

c2
· λl · I,

Consequently,

Q? = Sλl

(
|Wl −

Y2
c2
|
)
,

where Sλl denotes the soft-thresholding operator,
defined as:

Sλl(x) = sign(x) ·max(|x| − λl, 0)

• Sub-problem Dh

D?
h = argmin

Dh

L = ∇Dh
L⇔

∇Dh
L = WT

h · (Sh −Dh ·Wh)

Setting, ∇Dh
L = 0,

Dh =
Sh ·WT

h

φh + δ
,

where φh = Wh ·WT
h

• Sub-problem Dl

D?
l = argmin

Dl

L = ∇Dl
L⇔

∇Dl
L = WT

l · (Sl −Dl ·Wl)
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Setting, ∇Dh
L = 0,

Dh =
Sl ·WT

l

φl + δ
,

where φh = Wl ·WT
l .


